
Optimal distributed control with stability guarantees
by training a network of neural closed-loop maps

Danilo Saccani, Leonardo Massai, Luca Furieri and Giancarlo Ferrari-Trecate

Abstract— This paper proposes a novel approach to im-
prove the performance of distributed nonlinear control systems
while preserving stability by leveraging Deep Neural Networks
(DNNs). We build upon the Neural System Level Synthesis
(Neur-SLS) framework and introduce a method to parameterize
stabilizing control policies that are distributed across a network
topology. A distinctive feature is that we iteratively minimize
an arbitrary control cost function through an unconstrained
optimization algorithm, all while preserving the stability of the
overall network architecture by design. This is achieved through
two key steps. First, we establish a method to parameterize
interconnected Recurrent Equilibrium Networks (RENs) that
guarantees a bounded L2 gain at the network level. This ensures
stability. Second, we demonstrate how the information flow
within the network is preserved, enabling a fully distributed
implementation where each subsystem only communicates with
its neighbors. To showcase the effectiveness of our approach, we
present a simulation of a distributed formation control problem
for a fleet of vehicles. The simulation demonstrates how the
proposed neural controller enables the vehicles to maintain
a desired formation while navigating obstacles and avoiding
collisions, all while guaranteeing network stability.

I. INTRODUCTION

Controlling interconnected systems with non-linear dy-
namics is a crucial task across various fields ranging from
robotics, and power grids, to social sciences [1]–[4]. How-
ever, achieving networked control becomes significantly
more challenging when the system dynamics are non-linear
and a convex function does not accurately capture the desired
performance metric.

Indeed, several Optimal Distributed Control (ODC) ap-
proaches exist for the case of linear systems with convex
performance metrics [5]–[9]; however, for non-convex prob-
lems, solutions are scarce. Dissipativity-based approaches,
like passivity control [10], [11] and control by interconnec-
tion [12], offer ways to design stabilizing distributed control
policies without minimizing a specific cost. However, these
methods become prohibitive when it comes to minimizing
a user-defined cost function. Nonlinear Distributed Model
Predictive Control (DMPC) [13], [14] gives an alternative,
but computing crucial terminal ingredients in a distributed
manner remains unsolved for non-linear systems. Addition-
ally, suitable distributed optimization algorithms for online
implementation are limited, often relying on the Alternat-
ing Direction Method of Multipliers (ADMM) [15], whose

This research has been supported by the Swiss National Science Foun-
dation under the NCCR Automation (grant agreement 51NF40_180545).

The authors are with the Institute of Mechanical Engineering, Ecole Poly-
technique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
(email: {l.massai,danilo.saccani,luca.furieri,
giancarlo.ferraritrecate}@epfl.ch)

potential lack of convergence poses limitations in real-time
applications.

Recently, there has been a surge of interest in using
Deep Neural Networks (DNNs) to parameterize highly non-
linear distributed controllers. Approaches like Graph Neural
Networks (GNNs) have shown promise in designing such
policies [16], [17] in a scalable way. Nevertheless, stability
guarantees are often limited by restrictive assumptions. For
instance, some methods require a system to be initially linear
and open-loop stable, with the trained network maintaining
small Lipschitz constants across layers [17]. These condi-
tions might not hold during exploration, potentially leading
to system failures before a safe policy is learned [18].

An alternative approach using deep Hamiltonian control
policies offers built-in closed-loop stability guarantees for
specific systems [19]. However, these policies only apply to
a narrow class of systems with a particular skew-symmetric
interconnection structure.

Contributions: With this work, we provide two main
contributions. First, we propose a novel distributed state-
feedback control scheme leveraging the Neural System Level
Synthesis (Neur-SLS) framework and dissipativity theory.
The scheme is composed of a parametrized family of nonlin-
ear sub-operators, interconnected according to a prescribed
network structure that mimics the sparsity pattern of the
distributed system itself. This means that communication
between sub-operators only occurs between interconnected
agents in the physical system. We prove that closed-loop
stability is guaranteed as long as the parameters satisfy a
Linear Matrix Inequality (LMI). Secondly, we present a free
parametrization of this networked ensemble of nonlinear sub-
operators, with each sub-operator modeled as a Recurrent
Equilibrium Network (REN). The parameterization is free in
the sense that the resulting distributed controller guarantees
the closed-loop stability for any value of the parameters.
This eliminates the need to enforce LMIs, thereby enabling
the training of a distributed controller using unconstrained
learning algorithms akin to neural networks. This sparse neu-
ral controller structure facilitates distributed implementation
across individual subsystems while preserving communica-
tion topology among the subsystems.

NOTATION

Throughout the paper, we denote with N the set of
non-negative integers. Ia (0a) is the identity (zero) square
matrix with dimensions a× a, 0a×b is the zero matrix with
dimension a × b and 1 is the vector of all ones, where the
dimension is clear from the context. We denote with diag(v)

ar
X

iv
:2

40
4.

02
82

0v
2

 [
m

at
h.

O
C

]
 3

1
Ju

l 2
02

4

a square diagonal matrix with the elements of vector v on the
main diagonal, while blkdiag(A,B) denotes a block diagonal
matrix created by aligning the matrices A and B along the
diagonal. Positive semidefinite matrices A are denoted as
A ⪰ 0. The set of all sequences v = (v0, v1, v2, . . .), where
vt ∈ Rn for all t ∈ N, is denoted as ln. Moreover, v

belongs to ln2 ⊂ ln if ∥v∥2 =
(∑∞

t=0 |vt|2
) 1

2 < ∞. We
refer to vT to denote a truncation of v with t ranging
from 0 to T . An operator A : ln → lm is said to be
causal if A(x) = (A0(x0), A1(x1), . . . , At(xt), . . .). If
At(xt) = At(0,xt−1), then A is said to be strictly causal.
An operator A : ln → lm is said to be L2 stable if it is
causal and A(a) ∈ lm2 for all a ∈ ln2 . Equivalently, we write
A ∈ L2. Given an undirected graph G = (V, E) described
by the set of nodes V and the set of edges E ⊂ V × V , we
denote set of neighbors of node i, including i itself by Ni =
{i} ∪ {j | {i, j} ∈ E} ⊆ V . We denote with colj∈V(v

[j])
a vector which consists of the stacked subvectors v[j] from
j = 1 to j = |V| and with v[Ni] a vector composed by the
stacked subvectors v[i], i.e. v[Ni] = coli∈Ni(v

[i]).

II. PRELIMINARIES

A. Distributed nonlinear systems

We consider a network of N interconnected nonlinear
subsystems. The coupling network among the subsystems is
defined as an undirected communication graph G = (V, E),
with V = {1, . . . , N} representing the subsystems in the
network, and the set of edges E containing the pairs of
subsystems {i, j}, which can communicate with each other.
Each subsystem is of the form

x
[i]
t = f [i](x

[Ni]
t−1 , u

[i]
t−1) + w

[i]
t , ∀t ≥ 1, (1)

where state and input of each subsystem i ∈ V are denoted by
x[i] ∈ Rni and u[i] ∈ Rmi respectively. Moreover, w[i] ∈ Rni

is an unknown process noise with w
[i]
0 = x

[i]
0 .

In operator form, we can express the subsystem (1) as:

x[i] = F[i](x[Ni],u[i]) +w[i], (2)

where F[i] : lnNi × lmi → lni is a strictly causal operator
defining the subsystem dynamics such that F[i](x[Ni],u[i]) =(
0, f [i]

(
x
[Ni]
0 , u

[i]
0

)
, . . . , f [i]

(
x
[Ni]
t , u

[i]
t

)
, . . .

)
.

By combining the local system dynamics in (1), the dynamics
of the global system result in

xt = f(xt−1, ut−1) + wt, ∀t ≥ 0, (3)

where x = coli∈V(x
[i]) ∈ Rn, u = coli∈V(u

[i]) ∈ Rm,w =
coli∈V(w

[i]) ∈ Rn. Similarly to the subsystems, we can
rewrite system (3) in operator form as:

x = F(x,u) +w, (4)

We make the following Assumption on the system to be
controlled:

Assumption 1: We assume that the causal operator F is
such that the map (w,u) 7→ x lies in L2, and that the process
noise w(t) ∼ D is distributed according to an unknown
distribution D, and that w belongs to ln2 .

The Assumption above means that the interconnection
is stable or locally controlled to achieve L2 stability. This
is typically true in practical applications where systems
are either pre-stabilized or can be stabilized using simple
controllers. While these controllers ensure stability, they
often result in suboptimal closed-loop performance. Our goal
is to enhance performance while maintaining stability.

To control the system, we consider nonlinear state-
feedback causal policies parametrized as follows

u = K(x,u) = (K0(x0), . . . ,Kt(xt,ut−1), . . .). (5)

Thanks to causality, each sequence of disturbances, denoted
as w ∈ ln2 , results in unique trajectories for the closed-
loop system (4)- (5). This implies that the mappings from
disturbances to state and control, denoted as Φx[F,K] and
Φu[F,K] respectively, are well-defined for any given system
F and controller K. Thus, we express x = Φx[F,K](w) and
u = Φu[F,K](w) for all w ∈ ln2 .

B. Problem formulation

Our goal is to address the following challenges in design-
ing a control policy K(x,u):
C-1 Ensuring the stability of the closed-loop mappings

Φx[F,K] and Φu[F,K] in the L2 sense.
C-2 Enhancing the performance of the closed-loop system

by minimizing a loss function defined as:

J = Ew∼D [ℓ(xT,uT)] , (6)

where ℓ is differentiable and ℓ(xT,uT) ≥ 0 for all
T ∈ N and all (x, u) ∈ Rn+m.

C-3 Ensuring that the resulting policy K(x,u) can be imple-
mented in a distributed manner exploiting a neighbor-to-
neighbor communication. Specifically, we require that

u[i] = K[i](x[Ni],u[Ni]), ∀i ∈ V . (7)

Remark 1: Unlike most optimal control and dynamic pro-
gramming problems that rely on a sum of stage costs over
time, our approach is more flexible. We only require the loss
function to be differentiable in its arguments. This allows us
to incorporate complex objectives typical of many robotics
and reinforcement learning tasks, such as logical specifica-
tions formulated using Signal Temporal Logic (STL) [20].

We can now define the finite horizon ODC problem we
aim to solve:

min
K(·)

Ew∼D [ℓ(xT,uT)] (8a)

subject to w0 = x0, (1), (5), (7), ∀i ∈ V, (8b)
(Φx[F,K],Φu[F,K]) ∈ L2 , (8c)

where (5), (7) impose the causality and sparsity structure of
the obtained policy while ensuring the satisfaction of (8c)
guarantees the closed-loop stability of the distributed system
at a global network level.

Remark 2: Under Assumption 1, the problem (8) is al-
ways feasible (consider for example K = 0).

Remark 3: Critically, (8c) enforces strict closed-loop sta-
bility at the network level for all optimized distributed

R[1](v[1])

R[N](v[N])

. . .

Mvz

z

v
u

ŵ
Muz

R

Mvw

Fig. 1: Interconnection of N operators R[i].

policies. However, in this paper we consider a stronger
requirement since we are interested in iteratively solving the
optimization problem (8) while ensuring fail-safe learning.
This means remaining within the feasible region defined
by (8b) and (8c) at every iteration, while improving the
obtained policy by minimizing the loss function (8a).

III. MAIN RESULT: FREE PARAMETRIZATION OF
DISTRIBUTED STABLE NEURAL CLOSED-LOOP MAPS

In this section, we will address the three main objectives
we aim to achieve. Firstly, we will begin by recalling the
process of parametrizing stabilizing control policies for the
closed-loop system to establish a framework capable of
satisfying C-1 with a distributed structure C-3. Then, we will
demonstrate how a proper parametrization of the controller
enables us to fulfill C-2 in an unconstrained fashion.

A. Networked controller

To achieve a distributed controller ensuring closed-loop
stability, we first recall the findings introduced in [21] for
centralized control. Using insights from internal model con-
trol [22], the main result of [21] is that under Assumption 1,
all and only stabilizing control policies for the system F
can be parameterized in terms of one stable operator R ∈
L2 by implementing the control input u = R(ŵ) where
ŵ = x− F(x,u) reconstructs the true disturbances w. The
resulting closed loop system is given by

x = F(x,u) +w,

u = R(x− F(x,u)) , R ∈ L2 , (9)

where R defines an overall control policy K such that u =
K(x,u) = R(ŵ).

Beyond achieving closed-loop stability, the information
constraints (7) of the ODC problem (8) bring in additional
challenges. Indeed, implementing a controller u = R(ŵ)
requires, at each node i ∈ V , information about other ŵ[i]’s,
which in turn are reconstructed based on the neighboring
states x[Ni]’s and u[i]’s, that is, w[i] = x[i]−F[i](x[Ni],u[i]).
This raises the question of how the constraints in (7) impact
the design of R.

Our solution is based on designing N networked L2 sub-
operators R[i] : lqi → lri whose interconnection structure is
shown in Fig. 1 and resulting in the overall local controller
shown in Fig. 2. Specifically, we aim to design sub-operators

with input v[i] ∈ Rqi and output z[i] ∈ Rri with qi ≥ ni and
ri ≥ mi, ∀i ∈ V whose state-space definition is as follows:

ξ
[i]
t+1 =ρ[i]

(
ξ
[i]
t , v

[i]
t

)
z
[i]
t =χ[i]

(
ξ
[i]
t , v

[i]
t

)
, ∀i ∈ V ∀t ≥ 0, (10)

where ξ
[i]
t ∈ Rc is the internal state. We assume that each

sub-operator has a finite L2-gain not grater than γ[i], meaning
that there exists a non-negative local storage function V [i]

such that for all t ∈ N

V [i](ξ
[i]
t+1)− V [i](ξ

[i]
t) ≤ s[i](v

[i]
t , z

[i]
t) , (11)

where s[i](v[i], z[i]) is the quadratic supply rate

s[i](v[i], z[i]) =

[
v[i]

z[i]

]⊤ [
γ[i]2Iqi 0qi×ri

0ri×qi −Iri

]
︸ ︷︷ ︸

X[i]

[
v[i]

z[i]

]
.

(12)
It is worth mentioning that (11) is the definition of dissipa-
tivity for the system (10) with respect to the generic supply
rate s[i](v[i], z[i]). For the specific supply given in (12), we
retrieve the well-known concept of finite L2-gain property,
which is indeed a particular case of dissipativity (see [23]).

The interconnection structure of sub-operators shown in
Fig. 1 is formalized as follows:[

v
u

]
= M̄

[
z
ŵ

]
=

[
Mvz Mvw

Muz 0m×n

] [
z
ŵ

]
, (13)

where v ∈ Rq are the inputs to local controllers and z ∈ Rr

the outputs. The matrix M̄ describes how each sub-operator
input v[i] is coupled with each sub-operator output z[i] as well
as with the exogenous input w[i] and output u[i]. Specifically,
the matrix Mvz describes how the input of each sub-operator
is linked to the outputs of the others. In practice, Mvz is
defined coherently with the network structure defined by the
graph G so that vi depends on zNi

.
To obtain an overall operator R with a finite L2 gain γR >

0 between ŵ and u, we need to guarantee the dissipativity of
the interconnected operator R, with respect to the quadratic
supply rate:[

ŵ
u

]⊤ [
γ2
RIn 0n×m

0m×n −Im

]
︸ ︷︷ ︸

S

[
ŵ
u

]
. (14)

We are now in the position to state the following proposition
guaranteeing the L2 stability of the closed-loop (9).

Proposition 1: Consider the closed-loop system given
by (9) where the controller operator R(ŵ) is composed
of sub-operators interconnected according to (13). Let As-
sumption 1 hold, then the system (9) is L2 stable, i.e.,
(Φx[F,K],Φu[F,K]) ∈ L2 if there exist scalars α[i] ≥
0, i ∈ V such that the following inequality holds:

Mvz Mvw

I 0
0 I
Muz 0


⊤ [

X(α[i]X [i]) 0
0 −S

]
Mvz Mvw

I 0
0 I
Muz 0

 ⪯ 0 ,

(15)

F[i]
(
x[Ni],u[i]

)

R[i](·)

w[i]

ŵ[i]

x[i]+
+

x[Ni\i]

+

−

Subsystem

Local controller
u[i]

Neighbour-to-neighbour communication

F[i]
(
x[Ni],u[i]

)

x[Ni]

z[Ni\i]

Fig. 2: Proposed local controller parametrizing stabilizing
controllers in terms of freely chosen sub-operator R[i] ∈ L2.

where X(α[i]X [i]) is a matrix composed of the weighted
matrices that define the local supply functions X [i] (see
Appendix A), and the matrices Mvz , Mvw, Muz and S are
defined in (13) and (15).

Proof: Thanks to Assumption 1, from [21, Thm. 2]
we have that (Φx[F,K],Φu[F,K]) ∈ L2 for any R ∈ L2.
Now we have to prove that the operator R composed by
interconnecting L2 stable operators R[i] as in (13) has a
finite L2 gain if the inequality (15) is satisfied. Following
[11], we consider as candidate storage function the weighted
sum of the local storage functions for the whole intercon-
nection V (ξ) = α[1]V [1]

(
ξ[1]
)
+ · · ·+α[N]V [N]

(
ξ[N]

)
, with

α[i] ≥ 0 and ξ = coli∈V(ξ
[i]). Thus, to obtain a finite L2

gain between ŵ and u we want that the interconnection is
dissipative with respect to the weighted sum of the supply
rates (12) and that this term is dominated by the performance
supply rate (14), i.e.,

N∑
i=1

α[i]
[
V [i](ξ

[i]
t+1)− V [i](ξ

[i]
t)
]
≤

N∑
i=1

α[i]

[
v[i]

z[i]

]⊤
X [i]

[
v[i]

z[i]

]
≤[

ŵ
u

]⊤ [
γ2
RIn 0n×m

0m×n −Im

]
︸ ︷︷ ︸

S

[
ŵ
u

]
≤ 0. (16)

By rearranging the right-hand side of (16) we can rewrite it
as: 

v
z
ŵ
u


⊤ [

X(α[i]X [i]) 0
0 −S

]
v
z
ŵ
u

 ≤ 0 . (17)

By substituting the interconnection (13), we obtain (15).

Proposition 1 allows us to fulfill C-1 and C-3 by providing
a condition that ensures the closed-loop stability at the
network level (9) with a sparse and causal controller. We
will address C-2 in the next section.

B. Free parametrization of networked RENs

Recently, finite-dimensional DNN approximations of non-
linear Lp operators [21], [24] have been proposed. Specif-
ically, as suggested in [21] an operator R : ln → lm is a

REN if u = R(ŵ) is generated by the following dynamical
system with input ŵ ∈ Rn and output u ∈ Rm: ξt

νt
ut

 =

 A1 B1 B2

C1 D11 D12

C2 D21 D22


︸ ︷︷ ︸

Z(θ,γ)

 ξt−1

σ(νt)
ŵt

 , ξ−1 = 0,

(18)
where ξ ∈ Rc and ν ∈ Rs are the hidden states and the
input of neurons of the REN, while σ : R → R is the acti-
vation function applied element-wise. Further, σ(·) must be
piecewise differentiable and with first derivatives restricted
to the interval [0, 1]. As highlighted in [24], RENs are as
expressive as various existing DNN architectures. However,
when picking any random value for their parameters, the
operator R defined by (18) might not lie in the space L2.
In [24] the authors introduce a smooth function Z that takes
unconstrained training parameters θ ∈ Rnθ , for a suitable
nθ, and a prescribed L2 gain γ > 0 map them to a matrix
Z(θ, γ), which defines (18). Notably, they ensure that the
resulting operator R[θ, γ] is in L2 and has L2-gain at most
γ for any value of the parameters θ. For this reason the
parametrization induced by Z is termed free.

Since our focus is on using a networked operator as
explained in Section III-A, we consider an interconnection
of RENs that replicates the sparsity of the system. To meet
requirement C-2 without dealing with a large-dimensional
constrained optimization problem, we aim to develop a free
parametrization of the networked operator. This means find-
ing a parametrization that allows any parameter value while
still meeting the constraint. To achieve this, we consider the
following dynamics of the interconnected sub-operators R[i]: ξ

[i]
t

ν
[i]
t

z
[i]
t

 =

 A
[i]
1 B

[i]
1 B

[i]
2

C
[i]
1 D

[i]
11 D

[i]
12

C
[i]
2 D

[i]
21 D

[i]
22


︸ ︷︷ ︸

Z[i](θ[i],γ[i])

 ξ
[i]
t−1

σ(ν
[i]
t)

v
[i]
t

 , (19)

where ξ
[i]
−1 = 0, ∀i ∈ V , and Z [i](θ[i], γ[i]) defining the free

parametrization of the local REN model (19). Before entering
the details of the proposed parametrization, we consider the
following Assumption on the chosen interconnection for the
network of RENs.

Assumption 2: We assume a particular structure for the
matrices Mvw and Muz , more in detail:

(a) we assume that there exists a permutation matrix C ∈
[0, 1]q×q such that

CMvw =

[
In

0(q−n)×n

]
. (20)

Notice that this also implies that Mvw is a positive-
valued semi-orthogonal matrix satisfying M⊤

vwMvw =
In.

(b) We assume that Muz is semi-orthogonal, i.e., it satisfies

M⊤
uzMuz = H, H = diag(h), h ∈ Rr . (21)

Remark 4: A few comments on Assumption 2 are in
order. With (a) we allow the input of one or more sub-
operators to depend on the exogenous input. More in detail,
the assumption covers all cases where each sub-system can
have inputs depending on different exogenous inputs. What
it does not cover, is the case in which different sub-systems
have inputs depending on the combination of common ex-
ogenous inputs. We aim to relax this assumption in future
work. Condition (b) states that the columns of Muz are
mutually orthogonal, which in turn implies that the output
of the operator R is comprised of linearly independent
combinations of the sub-operators output z. This is fairly
general and gives one enough leeway on how the output u
is chosen. As a particular case, we have Muz = Ir where
the output of the operator coincides with the output of all
sub-operators.

Before presenting our main result, it is useful to define the
set of such sub-operators that takes at least one exogenous
input, which will be called out-connected. First of all, we
define

Aui = set of indices of u associated with i ∈ V, (22)
Azi = set of indices of z associated with i ∈ V. (23)

With this, we can define

A1
ui

= {k ∈ Aui
| (Mvw1)k = 1} , i ∈ V, (24)

A0
ui

= {k ∈ Aui
| (Mvw1)k = 0} , i ∈ V. (25)

These are those indices of ui that are associated with the
exogenous inputs and those that are not respectively. If A1

ui

is not empty, we say that the sub-operator i is out-connected.
The set of out-connected operators is

V1 =
{
i ∈ V | A1

ui
̸= ∅
}
. (26)

We are now able to present our main result concerning
a free parametrization of distributed L2-stable operators R
composed by a network of RENs.

Theorem 1: Consider a set V = {1, . . . , N} of sub-
operators R[i][θ[i], γ[i]], i ∈ V , each dissipative with respect
to the supply (12), and interconnected according to (13). By
choosing the L2 gain γ[i] of each sub-operator i ∈ V as
follows:

γ[i] = η(b[i]) =



(
1

α[i]
min

{
γ2
R

maxj∈A1
ui

(
∑

k |mjk|) γ2
R + 1

,

1

maxj∈A0
ui

(
∑

k |mjk|)

}) 1
2

, if i ∈ V1

(
1

α[i] maxj∈A0
ui

(
∑

k |mjk|)

) 1
2

, otherwise

(27)

where

α[i] = h[i] + max
j∈Azi

(∑
k

|mkj |

)
+ b[i]

2

, ∀i ∈ V, (28)

the interconnected system composed by the sub-operators
R[i][θ[i], η(b[i])] satisfy condition (15) for all θ[i], b[i], and
the resulting operator R[θ, γR] lies in L2.
The proof of Theorem 1 is moved to the Appendix for the
sake of readability. Theorem 1, together with Proposition
1, allows us to fulfill C-2 by enabling an unconstrained
parametrization of L2-stable distributed operators, effectively
removing the need to enforce the hard constraint 8c which,
thanks to Proposition 1, led to the inequality (15). This
is important as it allows the use of parametrized families
of highly non-linear operators such as RENs, which can
be optimized very efficiently by solving an unconstrained
optimization problem over the free parameters θ[i], b[i] with
standard backpropagation and unconstrained gradient descent
methods.

Remark 5: Notice that Theorem 1 generalizes [25,
Thm. 1]. In that paper, we considered the special case where
M⊤

uzMuz = Ir and Mvw = Iq . The latter condition implies
that w can only be an additive term in each sub-operator’s
input v (note that this also implies that w is constrained to
have the same dimension as the input v). In such a special
case, we have V1 = V,A1

ui
= Aui

and A0
ui

= ∅ ∀i ∈ V ,
therefore (27) reduces to

η(b[i]) =

√
1

α[i]

γ2
R

maxj∈Aui
(
∑

k |mjk|) γ2
R + 1

, ∀i ∈ V ,

(29)

which is the parametrization originally proposed in [25].

A detailed description of how Theorem 1 can be leveraged
for the training of a network of L2-bounded RENs, is
provided by Algorithm 1.

Remark 6: There is usually a “price to pay” for trans-
forming the problem (8) into an unconstrained one via a
free parametrization like the one we derived with Theorem
1. Mainly, this stems from the fact that the map η will only
output a subset of all possible L2-gains such that the overall
operator R lies in L2, which in turn means that we are
restricting ourselves to optimize over a subset of L2-bounded
operators. In particular, this comes from the use of sufficient
but not necessary conditions, like Gershgorin Theorem, to
ensure that (15) is satisfied and the reader can take a look
at the proof in the Appendix for the details. Finding less
conservative methods for guaranteeing the satisfaction of
(15) is still a matter of ongoing research. Despite this,
as it is shown in [24], the advantages of having a free
parametrization greatly outweigh such a drawback.

Remark 7: Notice that, due to the assumption made re-
garding the structure of the matrices Mvz and Mvw, the
computation of each γ[i] according to (1) only necessitates
knowledge of the coupling matrices Muz and Mvz . There-
fore, by assuming suitable separability properties of the costs
among agents, the proposed algorithm could be adapted to
a distributed implementation. The distributed design of local
controllers is not within the scope of this paper and will be
addressed in future research.

Algorithm 1 Training of networked L2 stable RENs

Input: Input data: initial conditions {wj
0}

nexp

j=1 sampled
from D, system model f(x, u), learning rate η, number
of epochs E.
Initialize randomly the parameters of each subsystem: θ[i],
b[i], i ∈ V and γR .
for e = 1 to E do

for j = 1 to nexp do
Initialize hidden state ξ[i], ∀i ∈ V .
Initialize control action u[i], ∀i ∈ V .
Compute γ[i] = η(b[i]), ∀i ∈ V using Eq. (27).
for t = 0 to T do

Simulate system (3)
Reconstruct the noise ŵ
Compute the inputs:
u
[i]
t = M

[i]
uz

(
C

[i]
2 ξ

[i]
t−1 +D

[i]
21σ(ν

[i]
t) +D

[i]
22ŵ

[i]
t

)
end for

end for
Compute loss Ew∼D [ℓ(xT,uT)].
Backpropagate gradients through time (see [26]) to

update parameters via gradient descent with learning rate
η.
end for
Output: Trained model parameters θi, b

[i], i ∈ V .

IV. NUMERICAL EXAMPLE

In this section, we demonstrate the effectiveness of the
proposed approach in addressing a complex control problem.
We use PyTorch to build and train our distributed neural con-
troller, employing stochastic gradient descent method. The
implementation of our approach can be found at https://
github.com/DecodEPFL/Distributed_neurSLS.
The system we are considering consists of four point-mass
vehicles (see Fig. 3), each with a position denoted as p[i] ∈
R2 and velocity represented as v[i] ∈ R2. Each vehicle
experiences friction forces, which leads to the discrete-time
model:[

p
[i]
t+1

v
[i]
t+1

]
=

[
p
[i]
t

v
[i]
t

]
+ Ts

[
v
[i]
t

m[i]−1
(
−c[i]|v[i]t |2 + F

[i]
t + u

[i]
t

)] ,
(30)

where, m[i] > 0 is the vehicle mass, c[i] > 0 is the friction
coefficient, u[i] is the local control input, Ts > 0 represents
the sampling time and F [i] ∈ R2 stands for the action of
a local base controller whose goal is to maintain a specific
formation between the agents, which is described by a fixed
distance δ[i] > 0 between them. More specifically, the base
controller stabilizes each agent around a final reference point
p̄[i], by applying the following force:

F [i] = −
|Ni\i|∑
j=1

k[ij](|p[i] − p[j]|2 − δ[i])− k[ir]|p̄[i] − p[i]|2,

(31)
where , k[ij], k[ir] > 0 are the gains used in the local
controllers. The overall system obtained thus consists of

m[i] 1 kg c[i] 1 Ns/m

k[ij] 1 N/m k[ir] 1 N/m

δ[1] = δ[3] 4 m δ[2] = δ[4] 1.5 m
Ts 0.05 s Q blkdiag(I16, 0.01 · I8)
η 0.001 E 1500

ξ[i] 25, ∀i ∈ V ν[i] 25

TABLE I: List of parameters employed in the simulation
∀i, j ∈ V .

nonlinear coupled subsystems (30)- (31). These subsystems
can be written as (1), for which the origin is a stable
equilibrium. We chose the loss function in (6) as:

ℓ(xT,uT) =

T∑
t=0

ℓ(xt, ut), (32)

ℓ(xt, ut) = ℓtraj(xt, ut) + ℓca(xt) + ℓobs(xt) + ℓform(xt),

where, ℓtraj(x, u) = [x⊤ u⊤]Q[x⊤ u⊤]⊤ with Q ⪰ 0
penalizes the distance between agents and their reference, as
well as the magnitude of the control action. The other terms,
ℓca(x), ℓobs(x) and ℓform(xt) instead, are barrier functions
that penalize collisions between agents and obstacles, and
incentivize maintaining the desired formation, respectively
(see Fig. 3). The expected value in the cost function (8a) is
approximated by an empirical average (see [21]) over 10 ran-
domly sampled initial conditions {ws

0}10s=1. The parameters
employed in the simulation are listed in Tab I. Fig. 3 shows
the closed loop trajectories of the controlled system. The goal
promoted by the cost ℓ(x, u) is to coordinate the formation in
order to pass through a narrow valley avoiding collision with
each others while keeping the connectivity required by the
formation control. The agents start from a randomly sampled
initial position marked with “◦” and have to reach the target
position marked with “⋆’".

V. CONCLUSIONS

This paper introduces a novel distributed control method
for interconnected nonlinear systems. By harnessing the
framework of neural system level synthesis and dissipativity
theory, we achieve optimized performance for user-defined
cost functions while guaranteeing stability throughout the
training process at the global network level. A key feature
is the ability to train local control policies using uncon-
strained optimization algorithms. We hope that the proposed
framework will pave the way for applications in several
domains where achieving both stability and optimal perfor-
mance has traditionally been difficult, such as smart-grid
control [27], flocking control for autonomous vehicles [28],
and distributed optimization algorithm design [29]. Further
important theoretical developments include the addition of
noisy outputs, unknown system dynamics, and parallelizing
the training across agents.

https://github.com/DecodEPFL/Distributed_neurSLS
https://github.com/DecodEPFL/Distributed_neurSLS

Fig. 3: Closed-loop trajectories after training over randomly sampled initial conditions marked with “◦” (filled transparent
“◦” are the sampled w0 used for the training). Images captured at time instants τ1 = 0.3 s, τ2 = 8.5 s and τ3 = 25 s.
Colored (gray) lines depict the trajectories within [0, τi] ([τi,∞)). Colored circles (and their radius) represent the agents
(and their size for collision avoidance), while colored “⋆” symbols represent the reference position and green ellipsoids are
the obstacles.

APPENDIX

A. Proof of Theorem 1

Firstly we rewrite X(α[i]X [i]) in a more compact form as:

X(α[i]X [i]) =

[
ΠN,v 0
0 −ΠN,z

]
, (33)

with ΠN,v = blkdiag{α[1]γ[1]2Iq1 , . . . , α
[N]γ[N]2IqN } and

ΠN,z = blkdiag{α[1]Ir1 , . . . , α
[N]IrN }. By Proposition

1, (15) needs to be satisfied, yielding:[
−M⊤

vzΠN,vMvz+ΠN,z−M⊤
uzMuz −M⊤

vzΠN,vMvw

−M⊤
vwΠN,vMvz −M⊤

vwΠN,vMvw+γ2
RIn

]
≻ 0 .

(34)

By applying the Schur complement, the above condition is
equivalent to

−M⊤
vzΠN,vMvz +ΠN,z −M⊤

uzMuz

−M⊤
vzΠN,vMvw[−M⊤

vwΠN,vMvw (35)

+ γ2
RIn]

−1M⊤
vwΠN,vMvz ≻ 0

−M⊤
vwΠN,vMvw + γ2

RIn ≻ 0 . (36)

Using the structure of Mvw given by Assumption 2, easy
computations show that M⊤

vwΠN,vMvw = P1 ∈ Rn×n is a
diagonal matrix where the diagonal elements are given by
α[i]γ[i]2 , ∀i ∈ V1, each one repeated as many times as the
cardinality of A1

ui
. Therefore, condition (36) reads as

−M⊤
vwΠN,vMvw + γ2

RIn ≻ 0 (37)

−P1 + γ2
RIn ≻ 0

⇐⇒ −α[i]γ[i]2 + γ2
R > 0

α[i]γ[i]2 < γ2
R,∀i ∈ V1 . (38)

As for condition (35) by collecting Mvz we obtain

M⊤
vz(−ΠN,v −ΠN,vMvw[−M⊤

vwΠN,vMvw

+ γ2
RIn]

−1M⊤
vwΠN,v)Mvz +ΠN,z −M⊤

uzMuz ≻ 0 (39)

By applying the Schur complement again this is equivalent
to: [

ΠN,z −H M⊤
vz

Mvz −D−1

]
≻ 0 (40)

D ≺ 0 , (41)

where we recall that M⊤
uzMuz = H is a diagonal matrix by

Assumption 2 and

D = (−ΠN,v −ΠN,vMvw[−M⊤
vwΠN,vMvw

+ γ2
RIn]

−1M⊤
vwΠN,v) . (42)

Using again the structure of Mvw given in Assumption 2, it
is easy to show that Mvw[−M⊤

vwΠN,vMvw

+ γ2
RIn]

−1M⊤
vw = P2 ∈ Rq×q is a diagonal matrix such

that (P2)jj = (−α[i]γ[i]2 + γ2
R)

−1 if j ∈ A1
ui
, i ∈ V1 and

(P2)jj = 0 otherwise. From this, we can see that D is a
diagonal matrix given by

(D)jj =


α[i]γ[i]2γ2

R

α[i]γ[i]2 − γ2
R

for j ∈ A1
ui
, i ∈ V1

−α[i]γ[i]2 for j ∈ A0
ui
, i ∈ V .

(43)

Notice that condition (41) is always satisfied when (38)
holds. Finally, we enforce (40) by applying the Gershgorin
Theorem [30]. In particular, let us focus on the first p rows
of the matrix (40). We want all the Gershgorin circles to lie

in the non-negative half-plane, i.e.

(ΠN,z −H)jj︸ ︷︷ ︸
Center

−
∑
k

|
(
M⊤

vz

)
jk
|︸ ︷︷ ︸

Radius

≥ 0, ∀j ∈ Azi , i ∈ V.

(44)

Notice that the Gershgorin center is α[i] − 1 for every j ∈
Azi , hence condition (44) can be enforced by imposing α[i]

such that:

α[i] = h[i] + max
j∈Azi

(∑
k

|mkj |

)
+ b[i]

2

, ∀i ∈ V, (45)

where b[i] ∈ R. Similarly, we can impose the other Ger-
shgorin circles associated with the remaining rows of the
matrix (40) to lie in the non-negative half of the plane.
Using (43), this yields the conditions:

0 ≤ α[i]γ[i]2 ≤ γ2
R

maxj∈Auw
i
(
∑

k |mjk|) γ2
R + 1

, ∀i ∈ V1

(46)

0 ≤ α[i]γ[i]2 ≤ 1

maxj∈A
u0
i

(
∑

k |mjk|)
, ∀i ∈ V , (47)

notice that (46) ensures that (38) holds true. The conditions
above can be rewritten as

0 ≤ α[i]γ[i]2 ≤ min

{
γ2
R

maxj∈A1
ui

(
∑

k |mjk|) γ2
R + 1

,

1

maxj∈A0
ui

(
∑

k |mjk|)

}
, ∀i ∈ V1 (48)

0 ≤ α[i]γ[i]2 ≤ 1

maxj∈A0
ui

(
∑

k |mjk|)
, ∀i ∈ V \ V1 , (49)

where α[i] is given by (45). From this, we readily obtain the
parametrization of the L2 gains given in (27). ■

REFERENCES

[1] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” nature, vol. 473, no. 7346, pp. 167–173, 2011.

[2] G. Antonelli, “Interconnected dynamic systems: An overview on
distributed control,” IEEE Control Systems Magazine, vol. 33, no. 1,
pp. 76–88, 2013.

[3] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes
on complex networks. Cambridge university press, 2008.

[4] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. S. Sastry,
“Distributed control applications within sensor networks,” Proceedings
of the IEEE, vol. 91, no. 8, pp. 1235–1246, 2003.

[5] M. Rotkowitz and S. Lall, “A characterization of convex problems
in decentralized control,” IEEE transactions on Automatic Control,
vol. 50, no. 12, pp. 1984–1996, 2005.

[6] L. Lessard and S. Lall, “Quadratic invariance is necessary and suf-
ficient for convexity,” in Proceedings of the 2011 American Control
Conference. IEEE, 2011, pp. 5360–5362.

[7] Y.-S. Wang, N. Matni, and J. C. Doyle, “A system-level approach
to controller synthesis,” IEEE Transactions on Automatic Control,
vol. 64, no. 10, pp. 4079–4093, 2019.

[8] L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour,
“On separable quadratic lyapunov functions for convex design of
distributed controllers,” in 2019 18th European control conference
(ECC). IEEE, 2019, pp. 42–49.

[9] ——, “Sparsity invariance for convex design of distributed con-
trollers,” IEEE Transactions on Control of Network Systems, vol. 7,
no. 4, pp. 1836–1847, 2020.

[10] A. Van der Schaft, L2-gain and passivity techniques in nonlinear
control. Springer, 2000.

[11] M. Arcak, C. Meissen, and A. Packard, Networks of dissipative
systems: compositional certification of stability, performance, and
safety. Springer, 2016.

[12] R. Ortega, A. Van Der Schaft, F. Castanos, and A. Astolfi, “Con-
trol by interconnection and standard passivity-based control of port-
hamiltonian systems,” IEEE Transactions on Automatic control,
vol. 53, no. 11, pp. 2527–2542, 2008.

[13] R. Scattolini, “Architectures for distributed and hierarchical model
predictive control–a review,” Journal of process control, vol. 19, no. 5,
pp. 723–731, 2009.

[14] J. Liu, D. Muñoz de la Peña, and P. D. Christofides, “Distributed model
predictive control of nonlinear process systems,” AIChE journal,
vol. 55, no. 5, pp. 1171–1184.

[15] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan,
“A general analysis of the convergence of admm,” in International
conference on machine learning. PMLR, 2015, pp. 343–352.

[16] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph neural
networks,” in Conference on robot learning. PMLR, 2020, pp. 671–
682.

[17] F. Gama and S. Sojoudi, “Graph neural networks for distributed linear-
quadratic control,” in Learning for Dynamics and Control. PMLR,
2021, pp. 111–124.

[18] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 33, no. 01, 2019, pp. 3387–3395.

[19] L. Furieri, C. L. Galimberti, M. Zakwan, and G. Ferrari-Trecate,
“Distributed neural network control with dependability guarantees: a
compositional port-hamiltonian approach,” in Learning for Dynamics
and Control Conference. PMLR, 2022, pp. 571–583.

[20] K. Leung, N. Aréchiga, and M. Pavone, “Backpropagation through
signal temporal logic specifications: Infusing logical structure into
gradient-based methods,” The International Journal of Robotics Re-
search, vol. 42, no. 6, pp. 356–370, 2023.

[21] L. Furieri, C. L. Galimberti, and G. Ferrari-Trecate, “Neural system
level synthesis: Learning over all stabilizing policies for nonlinear
systems,” in 2022 IEEE 61st Conference on Decision and Control
(CDC). IEEE, 2022, pp. 2765–2770.

[22] C. G. Economou, M. Morari, and B. O. Palsson, “Internal model
control: Extension to nonlinear system,” Industrial & Engineering
Chemistry Process Design and Development, vol. 25, no. 2, pp. 403–
411, 1986.

[23] P. J. Koelewijn and R. Tóth, “Incremental stability and performance
analysis of discrete-time nonlinear systems using the lpv framework,”
IFAC-PapersOnLine, vol. 54, no. 8, pp. 75–82, 2021.

[24] M. Revay, R. Wang, and I. R. Manchester, “Recurrent equilibrium
networks: Flexible dynamic models with guaranteed stability and
robustness,” IEEE Transactions on Automatic Control, 2023.

[25] L. Massai, D. Saccani, L. Furieri, and G. Ferrari-Trecate, “Un-
constrained learning of networked nonlinear systems via free
parametrization of stable interconnected operators,” arXiv preprint
arXiv:2311.13967, 2023.

[26] P. J. Werbos, “Backpropagation through time: what it does and how
to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560,
1990.

[27] P. Nahata, R. Soloperto, M. Tucci, A. Martinelli, and G. Ferrari-
Trecate, “A passivity-based approach to voltage stabilization in dc
microgrids with zip loads,” Automatica, vol. 113, p. 108770, 2020.

[28] A. Carron, D. Saccani, L. Fagiano, and M. N. Zeilinger, “Multi-agent
distributed model predictive control with connectivity constraint,”
IFAC-PapersOnLine, vol. 56, no. 2, pp. 3806–3811, 2023.

[29] A. Martin and L. Furieri, “Learning to optimize with conver-
gence guarantees using nonlinear system theory,” arXiv preprint
arXiv:2403.09389, 2024.

[30] H. N. Salas, “Gershgorin’s theorem for matrices of operators,” Linear
algebra and its applications, vol. 291, no. 1-3, pp. 15–36, 1999.

	Introduction
	Preliminaries
	Distributed nonlinear systems
	Problem formulation

	Main result: Free parametrization of distributed stable neural closed-loop maps
	Networked controller
	Free parametrization of networked RENs

	Numerical example
	Conclusions
	Appendix
	Proof of Theorem 1

	References

